170 research outputs found

    Analytical and Numerical Characterization of Cherenkov Diffraction Radiation as a Longitudinal Electron Bunch Profile Monitor for AWAKE Run 2

    Get PDF
    In this paper, CST simulations of the coherent Cherenkov Diffraction Radiation with a range of parameters for different dielectric target materials and geometries are discussed and compared with the theoretical investigation of the Polarization Current Approach to design a prototype of a radiator for the bunch length/profile monitor for AWAKE Run 2. It was found that the result of PCA theory and CST simulation are consistent with each other regarding the shape of the emitted ChDR cone

    Optimization Study of Beam Position and Angular Jitter Independent Bunch Length Monitor for Awake Run 2

    Get PDF
    In this paper, a study using the Polarization Current Approach (PCA) model is performed to optimize the design of a short bunch length monitor using two dielectric radiators that produce coherent Cherenkov Diffraction Radiation (ChDR). The electromagnetic power emitted from each radiator is measuring a different part of the bunch spectrum using Schottky diodes. For various bunch lengths, the coherent ChDR spectrums are calculated to find the most suitable frequency bands for the detection system. ChDR intensities measured by each detector are estimated for different impact parameters to explore the dependence of bunch length monitor on beam position and angular jitter. It is found that, in the present configuration, the effects of beam position and angular jitter are negligibly small for bunch length measurement

    Laserwire at the Accelerator Test Facility 2 with Sub-Micrometre Resolution

    Get PDF
    A laserwire transverse electron beam size measurement system has been developed and operated at the Accelerator Test Facility 2 (ATF2) at KEK. Special electron beam optics were developed to create an approximately 1 x 100 {\mu}m (vertical x horizontal) electron beam at the laserwire location, which was profiled using a 150 mJ, 71 ps laser pulse with a wavelength of 532 nm. The precise characterisation of the laser propagation allows the non-Gaussian transverse profiles of the electron beam caused by the laser divergence to be deconvolved. A minimum vertical electron beam size of 1.07 ±{\pm} 0.06 (stat.) ±{\pm} 0.05 (sys.) {\mu}m was measured. A vertically focussing quadrupole just before the laserwire was varied whilst making laserwire measurements and the projected vertical emittance was measured to be 82.56 ±{\pm} 3.04 pm rad.Comment: 17 pages, 26 figures, submitted to Phys. Rev. ST Accel. Beam

    Optical diffraction radiation for position monitoring of charged particle beams

    Get PDF
    In the framework of the future linear collider collaboration (CLIC, ILC), non-intercepting beam monitoring instruments are under development for very low emittance and high charge density beams. Optical diffraction radiation (ODR) was studied and developed during the last years focussing on beam size measurements. We propose in the paper to consider the use of diffraction radiation for ultra relativistic beams as position monitors with applications for the centering of scrapers, collimators and targets with high resolution. We present the experimental results obtained using small aperture slits on the ATF2 extraction beam line at KEK and on the Cornell Electron Storage Ring with 1.2 GeV and 2.1 GeV electrons respectively

    Coherent Diffraction Radiation experiment at CTF3—Simulation studies

    Get PDF
    A two-target model was developed for the simulations of Coherent Diffraction Radiation (CDR) phenomenon for the experiment at the CLIC Test Facility 3 (CTF3 at CERN). The model is based on a classical DR theory. The radiation distribution from the targets, as a function of the angle and the frequency, was calculated for the first and the second target separately in order to understand how the final radiation distribution from the two targets, working as a system, is formed. The final radiation distribution of destructive interference between the two targets was obtained as well. The distributions were calculated for the working parameters of both the CTF3 and the experimental setup and were used for a single-electron spectrum calculation, required for the bunch profile reconstruction

    A multi-wirescanner test setup utilizing characteristic X-rays for charged particle and photon beam diagnostics

    Get PDF
    A multi-wirescanner for diagnostics of ionizing particle beams (e.g. both non-relativistic and ultra-relativistic charged particles; X-ray and gamma photons) is proposed and discussed in the paper. The quasimonochromatic characteristic X-rays and continuous background are clearly identified. The results of measurements of the transverse size, emittance, position and direction of beam propagation are presented and discusse

    Resonant Diffraction Radiation from an Ultrarelativistic Particle Moving Close to a Tilted Grating

    Get PDF
    A simple model for calculating the diffraction radiation characteristics from an ultrarelativistic charged particle moving close to a tilted ideally conducting strip is developed. Resonant diffraction radiation (RDR) is treated as a superposition of the radiation fields for periodically spaced strips. The RDR characteristics have been calculated as a function of the number of grating elements, tilted angle, and initial particle energy. An analogy with both the resonant transition radiation in absorbing medium and the parametric X-ray radiation is noted.Comment: 17 pages, 12 figures, RevTe
    corecore